
A Study of Discovery Mechanisms for Peer-to-Peer Applications1

M. Kelaskar, V. Matossian, P. Mehra, D. Paul, and M. Parashar

Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ.
kelaskar@paul.rutgers.edu {parashar, vincentm, mehra, dennisp}@ece.rutgers.edu

Abstract

 Peer-to-peer applications allow peers to connect or
disconnect from a network at any time and are based on a
loosely coupled resource distribution model. As a result,
robust and efficient discovery mechanisms are central to
the efficient functioning of such applications. In this
paper we evaluate four discovery mechanisms (flooding
and the forward routing algorithms CHORD, Pastry and
CAN) against the requirements of three prevalent classes
of peer-to-peer applications, and investigate the
suitability of these mechanisms for the applications.

Keywords: Peer-to-peer, discovery, content location,
CHORD, CAN, Pastry, flooding, forward routing

1. Introduction

Peer-to-peer systems are typically composed of a large
number of distributed, heterogeneous, autonomous, and
highly dynamic peers. As a result, peer-to-peer
applications need sophisticated discovery mechanisms to
enable peers to find, identify and communicate with other
peers. Centralized discovery mechanisms may not scale,
while decentralized discovery mechanisms may not
provide the guarantees required by the application. In this
paper, we investigate the requirements of three popular
classes of peer-to-peer applications. We then evaluate
existing discovery mechanisms – flooding and forward
routing algorithms as implemented in Chord [1], Pastry
[2] and Content-Addressable Network (CAN [3]). Finally,
we discuss the suitability of these mechanisms for each
application category.

2. Application Categories

We study 3 classes of peer-to-peer applications –
distributed file sharing, person-to-person messaging and
distributed computing. Distributed file sharing
applications (e.g. Freenet, Lime Wire, Morpheus) allow
peers to share files with every other peer of a group in an
application-based virtual network. Person-to-person
messaging systems (e.g. Jabber, Groove, Yahoo!
Messenger) allow peers to exchange text as well as
whiteboard type of messages. Finally, distributed
computing systems (e.g. SETI@home, Entropia), use

peers to perform computations. Table 1 summarizes the
discovery requirements for these application categories.

3. Discovery Mechanisms

In this paper, we study four popular decentralized
discovery mechanisms based on flooding and request
forwarding techniques – Flooding, Chord, Pastry, and
CAN. Table 2 summarizes the relevant parameters of
these mechanisms.
Flooding Protocols: In flooding protocols (e.g. Gnutella
[4]) peers flood an overlay network with queries to
discover a resource. Robustness and extensive reach of
discovery characterize flooding protocols. Although the
flooding protocol might give optimal results in a network
with a small to average number of peers, it does not scale
well. Furthermore, accurate discovery of peers is not
guaranteed in flooding mechanisms.
Chord: Chord [1] addresses key location and routing in
an overlay network forming a ring topology. Keys are
assigned to nodes using a consistent hashing algorithm,
enabling a node to locate a key in O (logN) hops where N
is the total number of nodes in the system.
Pastry: Pastry is a self-organizing, prefix-based routing
protocol. Each node in the Pastry network has a unique
identifier (nodeId) from a 128-bit circular index space.
The Pastry node routes a message to the node with a
nodeId that is numerically closest to the key contained in
the message, from its routing table of O(logN), where N is
the number of active Pastry nodes. The expected number
of routing steps is O(logN). Pastry attempts to minimize
the distance traveled by the message by taking into
account network locality.

Table 1 Application Categories Requirements

Table 2 Discovery Mechanisms parameters

Content Addressable Networks: A Content Addressable
Network [3] is a mesh of N nodes in a virtual d-
dimensional dynamically partitioned coordinate space.
The CAN discovery mechanism consists of two core
operations namely, a local hash-based look-up of a
pointer to a resource, and routing the look-up request to
the pointer. The CAN algorithm guarantees deterministic
discovery of an existing resource in O(N1/d) steps.
According to its authors, the CAN design is fault-tolerant,
robust, and self-organizing.

4. Experimental Evaluation

In order to evaluate the discovery mechanisms, we have
developed a general-purpose peer-to-peer simulation
framework. In our experiments nodes dynamically joined
an overlay-network. The experiment comprised
evaluating the number of hops required for discovery for
1000 queries in each network configuration. Each query
constituted the lookup of a randomly selected destination
from a randomly selected source. In the case of flooding,
messages were assigned a Time-To-Live of 7 and a fan-
out value of 3. For Chord, each node maintained a finger
table pointing to the successor of LogN identifier nodes
along the ring. For Pastry each node maintained key
identifiers ranging from 0 to 2128 –1. The 128-bit key was
computed as a cryptographic hash of the IP address of the
node. Every node had a routing table of (2b-1) columns
and [log 2b

 N] rows, where b is the number of bits required
for prefix matching (b = 4). The Leaf set (L) and the
Neighborhood set (M) in the node had 2*2b entries each.
In the CAN experiment, a two-dimensional overlay
network with a single reality was constructed over the
generated network topology. The CAN construction
algorithm was based on random zone halving in which a

new node sends a join request to a random CAN node and
acquires half its zone. A query consisted of a randomly
selected CAN node looking up a key from the uniformly
distributed CAN key space. The results are presented in
Figure 1. In this plot each point represents the average
number of hops taken for a lookup, and the error bars
represent the standard deviation of the measurements. As
illustrated in the plot, the results are in concurrence with
the published asymptotic upper bounds of the routing
algorithms underlying Chord, CAN and Pastry. The hash-
based request-forwarding algorithms outperform the
flooding algorithm by orders of magnitude with an
additional cost of routing table maintenance.

Figure 1 Evaluation of Discovery Algorithms

 At present, we are actively working towards extending
our experiments to evaluate fault-tolerance, accuracy and
availability of the Chord, CAN, Pastry and Flooding
discovery mechanisms. We will then use these to
investigate the applicability of these algorithms to the
applications categories.

5. Bibliography

[1] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer lookup
service for Internet applications. Technical Report TR-
819, MIT, March 2001
[2]A. Rowstron and P. Druschel, Pastry: Scalable,
distributed object location and routing for large-scale
peer-to-peer systems. IFIP/ACM International
Conference on Distributed Systems Platforms
(Middleware), November, 2001.
[3] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S.
Shenker; A Scalable Content-Addressable Network.
SIGCOMM01, August 27-31, 2001, San Diego,
California, USA.
[4] The Gnutella Protocol Specification v0.4 Revision 1.2.
[5] Peer-to-peer harnessing the power of disruptive
technologies, Andy Oram, O’Reilly, March 2001

1 The research presented in this paper is supported in part by
the National Science Foundation under grant number ACI
9984357 (CAREERS) awarded to Manish Parashar.

